Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Am Soc Nephrol ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593157

RESUMO

BACKGROUND: Trimethylamine N-oxide (TMAO) is a gut microbiota-derived metabolite of dietary phosphatidylcholine and carnitine. Experimentally, TMAO causes kidney injury and tubulointerstitial fibrosis. Little is known about prospective associations between TMAO and kidney outcomes, especially incident CKD. We hypothesized that higher plasma TMAO levels would be associated with higher risk of incident CKD and greater rate of kidney function decline. METHODS: We included 10,564 participants from two community-based, prospective cohorts with estimated glomerular filtration rate (eGFR) ≥ 60 mL/min/1.73m2 to assess incident CKD. TMAO was measured using targeted mass spectrometry at baseline and one follow-up visit. Creatinine and Cystatin C were measured up to 4 times during follow-up and used to compute eGFR. Incident CKD was defined as an eGFR decline ≥ 30% from baseline and a resulting eGFR<60 ml/min/1.73 m2. Time-varying Cox models assessed the association of serial TMAO measures with incident CKD, adjusting for sociodemographic, lifestyle, diet, and cardiovascular disease risk factors. Linear mixed models assessed the association with annualized eGFR change in 10,009 participants with at least one follow-up eGFR measure without exclusions for baseline eGFR levels. RESULTS: During a median follow-up of 9.4 years (interquartile range: 9.1-11.6 years), 979 incident CKD events occurred. Higher TMAO levels associated with higher risk of incident CKD (2nd to 5th vs. 1st quintile HR[95%CI]= 1.65 [1.22-2.23], 1.68 [1.26-2.25], 2.28 [1.72-3.02], and 2.24[1.68-2.98], respectively) and greater annualized eGFR decline ( 2nd to 5th vs. 1st quintile annualized eGFR change= -0.21 [-0.32, -0.09], -0.17 [-0.29, -0.05], -0.35 [-0.47, -0.22], and -0.43[-0.56, -0.30], respectively) with monotonic dose-response relationships. These associations were consistent across different racial/ethnic groups examined. The association with eGFR decline was similar to or larger than that seen for established CKD risk factors including diabetes, per 10 mmHg of higher systolic blood pressure, per 10 years of older age, and Black race. CONCLUSIONS: In community-based US adults, higher serial measures of plasma TMAO were associated with higher risk of incident CKD and greater annualized kidney function decline.

3.
Nat Med ; 30(2): 424-434, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38374343

RESUMO

Despite intensive preventive cardiovascular disease (CVD) efforts, substantial residual CVD risk remains even for individuals receiving all guideline-recommended interventions. Niacin is an essential micronutrient fortified in food staples, but its role in CVD is not well understood. In this study, untargeted metabolomics analysis of fasting plasma from stable cardiac patients in a prospective discovery cohort (n = 1,162 total, n = 422 females) suggested that niacin metabolism was associated with incident major adverse cardiovascular events (MACE). Serum levels of the terminal metabolites of excess niacin, N1-methyl-2-pyridone-5-carboxamide (2PY) and N1-methyl-4-pyridone-3-carboxamide (4PY), were associated with increased 3-year MACE risk in two validation cohorts (US n = 2,331 total, n = 774 females; European n = 832 total, n = 249 females) (adjusted hazard ratio (HR) (95% confidence interval) for 2PY: 1.64 (1.10-2.42) and 2.02 (1.29-3.18), respectively; for 4PY: 1.89 (1.26-2.84) and 1.99 (1.26-3.14), respectively). Phenome-wide association analysis of the genetic variant rs10496731, which was significantly associated with both 2PY and 4PY levels, revealed an association of this variant with levels of soluble vascular adhesion molecule 1 (sVCAM-1). Further meta-analysis confirmed association of rs10496731 with sVCAM-1 (n = 106,000 total, n = 53,075 females, P = 3.6 × 10-18). Moreover, sVCAM-1 levels were significantly correlated with both 2PY and 4PY in a validation cohort (n = 974 total, n = 333 females) (2PY: rho = 0.13, P = 7.7 × 10-5; 4PY: rho = 0.18, P = 1.1 × 10-8). Lastly, treatment with physiological levels of 4PY, but not its structural isomer 2PY, induced expression of VCAM-1 and leukocyte adherence to vascular endothelium in mice. Collectively, these results indicate that the terminal breakdown products of excess niacin, 2PY and 4PY, are both associated with residual CVD risk. They also suggest an inflammation-dependent mechanism underlying the clinical association between 4PY and MACE.


Assuntos
Doenças Cardiovasculares , Niacina , Feminino , Humanos , Camundongos , Animais , Modelos de Riscos Proporcionais , Inflamação
4.
Circ Res ; 134(4): 371-389, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38264909

RESUMO

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is a common but poorly understood form of heart failure, characterized by impaired diastolic function. It is highly heterogeneous with multiple comorbidities, including obesity and diabetes, making human studies difficult. METHODS: Metabolomic analyses in a mouse model of HFpEF showed that levels of indole-3-propionic acid (IPA), a metabolite produced by gut bacteria from tryptophan, were reduced in the plasma and heart tissue of HFpEF mice as compared with controls. We then examined the role of IPA in mouse models of HFpEF as well as 2 human HFpEF cohorts. RESULTS: The protective role and therapeutic effects of IPA were confirmed in mouse models of HFpEF using IPA dietary supplementation. IPA attenuated diastolic dysfunction, metabolic remodeling, oxidative stress, inflammation, gut microbiota dysbiosis, and intestinal epithelial barrier damage. In the heart, IPA suppressed the expression of NNMT (nicotinamide N-methyl transferase), restored nicotinamide, NAD+/NADH, and SIRT3 (sirtuin 3) levels. IPA mediates the protective effects on diastolic dysfunction, at least in part, by promoting the expression of SIRT3. SIRT3 regulation was mediated by IPA binding to the aryl hydrocarbon receptor, as Sirt3 knockdown diminished the effects of IPA on diastolic dysfunction in vivo. The role of the nicotinamide adenine dinucleotide circuit in HFpEF was further confirmed by nicotinamide supplementation, Nnmt knockdown, and Nnmt overexpression in vivo. IPA levels were significantly reduced in patients with HFpEF in 2 independent human cohorts, consistent with a protective function in humans, as well as mice. CONCLUSIONS: Our findings reveal that IPA protects against diastolic dysfunction in HFpEF by enhancing the nicotinamide adenine dinucleotide salvage pathway, suggesting the possibility of therapeutic management by either altering the gut microbiome composition or supplementing the diet with IPA.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Propionatos , Sirtuína 3 , Humanos , Camundongos , Animais , Insuficiência Cardíaca/metabolismo , Volume Sistólico/fisiologia , NAD , Sirtuína 3/genética , Indóis/farmacologia , Niacinamida
5.
Cancer ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285606

RESUMO

BACKGROUND: Dietary intake influences gut microbiome composition, which in turn may be associated with colorectal cancer (CRC). Associations of the gut microbiome with colorectal carcinogenesis may be mediated through bacterially regulated, metabolically active metabolites, including trimethylamine N-oxide (TMAO) and its precursors, choline, L-carnitine, and betaine. METHODS: Prospective associations of circulating TMAO and its precursors with CRC risk were investigated. TMAO, choline, betaine, and L-carnitine were measured in baseline serum samples from 761 incident CRC cases and 1:1 individually matched controls in the prospective Prostate, Lung, Colorectal, Ovarian Cancer Screening Trial Cohort using targeted fully quantitative liquid chromatography tandem mass spectrometry panels. Prospective associations of the metabolites with CRC risk, using multivariable conditional logistic regression, were measured. Associations of a priori-selected dietary exposures with the four metabolites were also investigated. RESULTS: TMAO and its precursors were not associated with CRC risk overall, but TMAO and choline were positively associated with higher risk for distal CRC (continuous ORQ90 vs. Q10  [95% CI] = 1.90 [CI, 1.24-2.92; p = .003] and 1.26 [1.17-1.36; p < .0001], respectively). Conversely, choline was inversely associated with rectal cancer (ORQ90 vs. Q10 [95% CI] = 0.77 [0.76-0.79; p < .001]). Red meat, which was previously associated with CRC risk in the Prostate, Lung, Colorectal, Ovarian Cancer Screening Trial Cohort , was positively associated with TMAO (Spearman rho = 0.10; p = .0003). CONCLUSIONS: Serum TMAO and choline may be associated with higher risk of distal CRC, and red meat may be positively associated with serum TMAO. These findings provide insight into a potential microbially mediated mechanism underlying CRC etiology.

6.
Eur J Heart Fail ; 26(2): 233-241, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38124458

RESUMO

AIM: Phenylacetylglutamine (PAGln) is a phenylalanine-derived metabolite produced by gut microbiota with mechanistic links to heart failure (HF)-relevant phenotypes. We sought to investigate the prognostic value of PAGln in patients with stable HF. METHODS AND RESULTS: Fasting plasma PAGln levels were measured by stable-isotope-dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) in patients with stable HF from two large cohorts. All-cause mortality was assessed at 5-year follow-up in the Cleveland cohort, and HF, hospitalization, or mortality were assessed at 3-year follow-up in the Berlin cohort. Within the Cleveland cohort, median PAGln levels were 4.2 (interquartile range [IQR] 2.4-6.9) µM. Highest quartile of PAGln was associated with 3.09-fold increased mortality risk compared to lowest quartile. Following adjustments for traditional risk factors, as well as race, estimated glomerular filtration rate, amino-terminal pro-B-type natriuretic peptide, high-sensitivity C-reactive protein, left ventricular ejection fraction, ischaemic aetiology, and HF drug treatment, elevated PAGln levels remained predictive of 5-year mortality in quartile comparisons (adjusted hazard ratio [HR] [95% confidence interval, CI] for Q4 vs Q1: 1.64 [1.07-2.53]). In the Berlin cohort, a similar distribution of PAGln levels was observed (median 3.2 [IQR 2.0-4.8] µM), and PAGln levels were associated with a 1.92-fold increase in 3-year HF hospitalization or all-cause mortality risk (adjusted HR [95% CI] for Q4 vs Q1: 1.92 [1.02-3.61]). Prognostic value of PAGln appears to be independent of trimethylamine N-oxide levels. CONCLUSION: High levels of PAGln are associated with adverse outcomes independent of traditional cardiac risk factors and cardio-renal risk markers.


Assuntos
Microbioma Gastrointestinal , Glutamina/análogos & derivados , Insuficiência Cardíaca , Humanos , Prognóstico , Biomarcadores , Volume Sistólico , Cromatografia Líquida , Função Ventricular Esquerda , Espectrometria de Massas em Tandem
7.
mBio ; : e0133123, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37947418

RESUMO

p-Cresol sulfate (pCS) and indoxyl sulfate (IS), gut microbiome-derived metabolites, are traditionally associated with cardiovascular disease (CVD) risks in the setting of impaired kidney function. While pharmacologic provision of pCS or IS can promote pro-thrombotic phenotypes, neither the microbial enzymes involved nor direct gut microbial production have been linked to CVD. Untargeted metabolomics was performed on a discovery cohort (n = 1,149) with relatively preserved kidney function, followed by stable isotope-dilution mass spectrometry quantification of pCS and IS in an independent validation cohort (n = 3,954). Genetic engineering of human commensals to produce p-cresol and indole gain-of-function and loss-of-function mutants, followed by colonization of germ-free mice, and studies on host thrombosis were performed. Systemic pCS and IS levels were independently associated with all-cause mortality. Both in vitro and within colonized germ-free mice p-cresol productions were recapitulated by collaboration of two organisms: a Bacteroides strain that converts tyrosine to 4-hydroxyphenylacetate, and a Clostridium strain that decarboxylates 4-hydroxyphenylacetate to p-cresol. We then engineered a single organism, Bacteroides thetaiotaomicron, to produce p-cresol, indole, or both metabolites. Colonizing germ-free mice with engineered strains, we show the gut microbial genes for p-cresol (hpdBCA) and indole (tryptophanase) are sufficient to confer a pro-thrombotic phenotype in vivo. Moreover, human fecal metagenomics analyses show that abundances of hpdBCA and tryptophanase are associated with CVD. These studies show that pCS and IS, two abundant microbiome-derived metabolites, play a broader potential role in CVD than was previously known. They also suggest that therapeutic targeting of gut microbial p-cresol- and indole-producing pathways represent rational targets for CVD.IMPORTANCEAlterations in gut microbial composition and function have been linked to numerous diseases. Identifying microbial pathways responsible for producing molecules that adversely impact the host is an important first step in the development of therapeutic interventions. Here, we first use large-scale clinical observations to link blood levels of defined microbial products to cardiovascular disease risks. Notably, the previously identified uremic toxins p-cresol sulfate and indoxyl sulfate were shown to predict 5-year mortality risks. After identifying the microbes and microbial enzymes involved in the generation of these uremic toxins, we used bioengineering technologies coupled with colonization of germ-free mice to show that the gut microbial genes that generate p-cresol and indole are sufficient to confer p-cresol sulfate and indoxyl sulfate formation, and a pro-thrombotic phenotype in vivo. The findings and tools developed serve as a critical step in both the study and targeting of these gut microbial pathways in vivo.

8.
Int J Cardiol ; 389: 131261, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37574027

RESUMO

BACKGROUND: Carnitine metabolism produces numerous molecular species of short-, medium-, and long-chain acylcarnitines, which play important roles in energy homeostasis and fatty acid transport in the myocardium. Given that disturbances in the carnitine metabolism are linked to cardiometabolic disease, we studied the relationship of circulating acylcarnitines with outcomes in patients with acute coronary syndromes (ACS) and evaluated differences in circulating levels of these metabolites between diabetic and non-diabetic patients. METHODS: Harnessing a prospective multicentre cohort study (SPUM-ACS; NCT01000701), we measured plasma levels of acylcarnitines, carnitine, and carnitine metabolites to assess their relationship with adjudicated major adverse cardiac events (MACE), defined as composite of myocardial infarction, stroke, clinically indicated revascularization, or death of any cause. The SPUM-ACS study enrolled patients presenting with ACS to Swiss University Hospitals between 2009 and 2012. Acetylcarnitine, octanoylcarnitine, proprionylcarnitine, butyrylcarnitine, pentanoylcarnitine, hexanoylcarnitine, carnitine, γ-butyrobetaine, and trimethylamine N-oxide were measured in plasma using stable isotope dilution high-performance liquid chromatography with online electrospray ionization tandem mass spectrometry. RESULTS: A total of 1683 patients with ACS were included in the study. All measured metabolites except γ-butyrobetaine and carnitine were higher in diabetic subject (n = 294) than in non-diabetic subjects (n = 1389). On univariate analysis, all metabolites, apart from octenoylcarnitine, were significantly associated with MACE at 1 year. After multivariable adjustment for established risk factors, acetylcarnitine remained an independent predictor of MACE at 1-year (quartile 4 vs. quartile 1, adjusted hazard ratio 2.06; 95% confidence interval 1.12-3.80, P = 0.020). CONCLUSION: Circulating levels of acetylcarnitine independently predict residual cardiovascular risk in patients with ACS.


Assuntos
Síndrome Coronariana Aguda , Diabetes Mellitus , Humanos , Acetilcarnitina , Síndrome Coronariana Aguda/diagnóstico , Carnitina , Estudos de Coortes , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/epidemiologia , Estudos Multicêntricos como Assunto , Estudos Prospectivos , Estudos Clínicos como Assunto
9.
Eur Heart J ; 44(32): 3085-3096, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37342006

RESUMO

AIMS: Precision microbiome modulation as a novel treatment strategy is a rapidly evolving and sought goal. The aim of this study is to determine relationships among systemic gut microbial metabolite levels and incident cardiovascular disease risks to identify gut microbial pathways as possible targets for personalized therapeutic interventions. METHODS AND RESULTS: Stable isotope dilution mass spectrometry methods to quantitatively measure aromatic amino acids and their metabolites were used to examine sequential subjects undergoing elective diagnostic cardiac evaluation in two independent cohorts with longitudinal outcome data [US (n = 4000) and EU (n = 833) cohorts]. It was also used in plasma from humans and mice before vs. after a cocktail of poorly absorbed antibiotics to suppress gut microbiota. Multiple aromatic amino acid-derived metabolites that originate, at least in part, from gut bacteria are associated with incident (3-year) major adverse cardiovascular event (MACE) risks (myocardial infarction, stroke, or death) and all-cause mortality independent of traditional risk factors. Key gut microbiota-derived metabolites associated with incident MACE and poorer survival risks include: (i) phenylacetyl glutamine and phenylacetyl glycine (from phenylalanine); (ii) p-cresol (from tyrosine) yielding p-cresol sulfate and p-cresol glucuronide; (iii) 4-OH-phenyllactic acid (from tyrosine) yielding 4-OH-benzoic acid and 4-OH-hippuric acid; (iv) indole (from tryptophan) yielding indole glucuronide and indoxyl sulfate; (v) indole-3-pyruvic acid (from tryptophan) yielding indole-3-lactic acid and indole-3-acetyl-glutamine, and (vi) 5-OH-indole-3-acetic acid (from tryptophan). CONCLUSION: Key gut microbiota-generated metabolites derived from aromatic amino acids independently associated with incident adverse cardiovascular outcomes are identified, and thus will help focus future studies on gut-microbial metabolic outputs relevant to host cardiovascular health.


Assuntos
Microbioma Gastrointestinal , Infarto do Miocárdio , Humanos , Camundongos , Animais , Aminoácidos Aromáticos/metabolismo , Triptofano , Glutamina , Glucuronídeos , Indóis/metabolismo , Progressão da Doença , Tirosina
10.
Int J Mol Sci ; 24(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37175797

RESUMO

Stroke is the second most common cause of cognitive impairment and dementia. Vascular dementia (VaD), a cognitive impairment following a stroke, is common and significantly impacts the quality of life. We recently demonstrated via gut microbe transplant studies that the gut microbe-dependent trimethylamine-N-oxide (TMAO) pathway impacts stroke severity, both infarct size and long-term cognitive outcomes. However, the molecular mechanisms that underly the role of the microbiome in VaD have not been explored in depth. To address this issue, we performed a comprehensive RNA-sequencing analysis to identify differentially expressed (DE) genes in the ischemic cerebral cortex of mouse brains at pre-stroke and post-stroke day 1 and day 3. A total of 4016, 3752 and 7861 DE genes were identified at pre-stroke and post-stroke day 1 and day 3, respectively. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated pathways of neurodegeneration in multiple diseases, chemokine signaling, calcium signaling, and IL-17 signaling as the key enriched pathways. Inflammatory response genes interleukin-1 beta (Il-1ß), chemokines (C-X-C motif chemokine ligand 10 (Cxcl10), chemokine ligand 2 (Ccl2)), and immune system genes (S100 calcium binding protein 8 (S100a8), lipocalin-2 (Lcn2)) were among the most significantly upregulated genes. Hypocretin neuropeptide precursor (Hcrt), a neuropeptide, and transcription factors such as neuronal PAS domain protein 4 (Npas4), GATA binding protein 3 (Gata3), and paired box 7 (Pax7) were among the most significantly downregulated genes. In conclusion, our results indicate that higher plasma TMAO levels induce differential mRNA expression profiles in the ischemic brain tissue in our pre-clinical stroke model, and the predicted pathways provide the molecular basis for regulating the TMAO-enhanced neuroinflammatory response in the brain.


Assuntos
Demência Vascular , Microbioma Gastrointestinal , Acidente Vascular Cerebral , Animais , Camundongos , Microbioma Gastrointestinal/fisiologia , Demência Vascular/genética , Transcriptoma , Ligantes , Qualidade de Vida , Acidente Vascular Cerebral/genética , Metilaminas/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
11.
Circulation ; 147(14): 1079-1096, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37011073

RESUMO

BACKGROUND: Large-scale human and mechanistic mouse studies indicate a strong relationship between the microbiome-dependent metabolite trimethylamine N-oxide (TMAO) and several cardiometabolic diseases. This study aims to investigate the role of TMAO in the pathogenesis of abdominal aortic aneurysm (AAA) and target its parent microbes as a potential pharmacological intervention. METHODS: TMAO and choline metabolites were examined in plasma samples, with associated clinical data, from 2 independent patient cohorts (N=2129 total). Mice were fed a high-choline diet and underwent 2 murine AAA models, angiotensin II infusion in low-density lipoprotein receptor-deficient (Ldlr-/-) mice or topical porcine pancreatic elastase in C57BL/6J mice. Gut microbial production of TMAO was inhibited through broad-spectrum antibiotics, targeted inhibition of the gut microbial choline TMA lyase (CutC/D) with fluoromethylcholine, or the use of mice genetically deficient in flavin monooxygenase 3 (Fmo3-/-). Finally, RNA sequencing of in vitro human vascular smooth muscle cells and in vivo mouse aortas was used to investigate how TMAO affects AAA. RESULTS: Elevated TMAO was associated with increased AAA incidence and growth in both patient cohorts studied. Dietary choline supplementation augmented plasma TMAO and aortic diameter in both mouse models of AAA, which was suppressed with poorly absorbed oral broad-spectrum antibiotics. Treatment with fluoromethylcholine ablated TMAO production, attenuated choline-augmented aneurysm initiation, and halted progression of an established aneurysm model. In addition, Fmo3-/- mice had reduced plasma TMAO and aortic diameters and were protected from AAA rupture compared with wild-type mice. RNA sequencing and functional analyses revealed choline supplementation in mice or TMAO treatment of human vascular smooth muscle cells-augmented gene pathways associated with the endoplasmic reticulum stress response, specifically the endoplasmic reticulum stress kinase PERK. CONCLUSIONS: These results define a role for gut microbiota-generated TMAO in AAA formation through upregulation of endoplasmic reticulum stress-related pathways in the aortic wall. In addition, inhibition of microbiome-derived TMAO may serve as a novel therapeutic approach for AAA treatment where none currently exist.


Assuntos
Aneurisma da Aorta Abdominal , Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Suínos , Camundongos Endogâmicos C57BL , Colina , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/prevenção & controle
12.
Eur Heart J ; 44(18): 1608-1618, 2023 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-36883587

RESUMO

AIMS: Little is known about associations of trimethylamine N-oxide (TMAO), a novel gut microbiota-generated metabolite of dietary phosphatidylcholine and carnitine, and its changes over time with all-cause and cause-specific mortality in the general population or in different race/ethnicity groups. The study aimed to investigate associations of serially measured plasma TMAO levels and changes in TMAO over time with all-cause and cause-specific mortality in a multi-ethnic community-based cohort. METHODS AND RESULTS: The study included 6,785 adults from the Multi-Ethnic Study of Atherosclerosis. TMAO was measured at baseline and year 5 using mass spectrometry. Primary outcomes were adjudicated all-cause mortality and cardiovascular disease (CVD) mortality. Secondary outcomes were deaths due to kidney failure, cancer, or dementia obtained from death certificates. Cox proportional hazards models with time-varying TMAO and covariates assessed the associations with adjustment for sociodemographics, lifestyles, diet, metabolic factors, and comorbidities. During a median follow-up of 16.9 years, 1704 participants died and 411 from CVD. Higher TMAO levels associated with higher risk of all-cause mortality [hazard ratio (HR): 1.12, 95% confidence interval (CI): 1.08-1.17], CVD mortality (HR: 1.09, 95% CI: 1.00-1.09), and death due to kidney failure (HR: 1.44, 95% CI: 1.25-1.66) per inter-quintile range, but not deaths due to cancer or dementia. Annualized changes in TMAO levels associated with higher risk of all-cause mortality (HR: 1.10, 95% CI: 1.05-1.14) and death due to kidney failure (HR: 1.54, 95% CI: 1.26-1.89) but not other deaths. CONCLUSION: Plasma TMAO levels were positively associated with mortality, especially deaths due to cardiovascular and renal disease, in a multi-ethnic US cohort.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Demência , Neoplasias , Insuficiência Renal , Adulto , Humanos , Fatores de Risco , Biomarcadores , Metilaminas/metabolismo , Insuficiência Renal/etiologia , Aterosclerose/complicações , Neoplasias/complicações
13.
Nat Med ; 29(3): 710-718, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36849732

RESUMO

Artificial sweeteners are widely used sugar substitutes, but little is known about their long-term effects on cardiometabolic disease risks. Here we examined the commonly used sugar substitute erythritol and atherothrombotic disease risk. In initial untargeted metabolomics studies in patients undergoing cardiac risk assessment (n = 1,157; discovery cohort, NCT00590200 ), circulating levels of multiple polyol sweeteners, especially erythritol, were associated with incident (3 year) risk for major adverse cardiovascular events (MACE; includes death or nonfatal myocardial infarction or stroke). Subsequent targeted metabolomics analyses in independent US (n = 2,149, NCT00590200 ) and European (n = 833, DRKS00020915 ) validation cohorts of stable patients undergoing elective cardiac evaluation confirmed this association (fourth versus first quartile adjusted hazard ratio (95% confidence interval), 1.80 (1.18-2.77) and 2.21 (1.20-4.07), respectively). At physiological levels, erythritol enhanced platelet reactivity in vitro and thrombosis formation in vivo. Finally, in a prospective pilot intervention study ( NCT04731363 ), erythritol ingestion in healthy volunteers (n = 8) induced marked and sustained (>2 d) increases in plasma erythritol levels well above thresholds associated with heightened platelet reactivity and thrombosis potential in in vitro and in vivo studies. Our findings reveal that erythritol is both associated with incident MACE risk and fosters enhanced thrombosis. Studies assessing the long-term safety of erythritol are warranted.


Assuntos
Infarto do Miocárdio , Edulcorantes , Humanos , Edulcorantes/efeitos adversos , Estudos Prospectivos , Eritritol/farmacologia , Coração
14.
Cell Host Microbe ; 31(1): 18-32.e9, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36549300

RESUMO

Recent studies show gut microbiota-dependent metabolism of dietary phenylalanine into phenylacetic acid (PAA) is critical in phenylacetylglutamine (PAGln) production, a metabolite linked to atherosclerotic cardiovascular disease (ASCVD). Accordingly, microbial enzymes involved in this transformation are of interest. Using genetic manipulation in selected microbes and monocolonization experiments in gnotobiotic mice, we identify two distinct gut microbial pathways for PAA formation; one is catalyzed by phenylpyruvate:ferredoxin oxidoreductase (PPFOR) and the other by phenylpyruvate decarboxylase (PPDC). PPFOR and PPDC play key roles in gut bacterial PAA production via oxidative and non-oxidative phenylpyruvate decarboxylation, respectively. Metagenomic analyses revealed a significantly higher abundance of both pathways in gut microbiomes of ASCVD patients compared with controls. The present studies show a role for these two divergent microbial catalytic strategies in the meta-organismal production of PAGln. Given the numerous links between PAGln and ASCVD, these findings will assist future efforts to therapeutically target PAGln formation in vivo.


Assuntos
Doenças Cardiovasculares , Microbioma Gastrointestinal , Camundongos , Animais , Glutamina
15.
Circ Heart Fail ; 16(1): e009972, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36524472

RESUMO

BACKGROUND: The gut microbiota-dependent metabolite phenylacetylgutamine (PAGln) is both associated with atherothrombotic heart disease in humans, and mechanistically linked to cardiovascular disease pathogenesis in animal models via modulation of adrenergic receptor signaling. METHODS: Here we examined both clinical and mechanistic relationships between PAGln and heart failure (HF). First, we examined associations among plasma levels of PAGln and HF, left ventricular ejection fraction, and N-terminal pro-B-type natriuretic peptide in 2 independent clinical cohorts of subjects undergoing coronary angiography in tertiary referral centers (an initial discovery US Cohort, n=3256; and a validation European Cohort, n=829). Then, the impact of PAGln on cardiovascular phenotypes relevant to HF in cultured cardiomyoblasts, and in vivo were also examined. RESULTS: Circulating PAGln levels were dose-dependently associated with HF presence and indices of severity (reduced ventricular ejection fraction, elevated N-terminal pro-B-type natriuretic peptide) independent of traditional risk factors and renal function in both cohorts. Beyond these clinical associations, mechanistic studies showed both PAGln and its murine counterpart, phenylacetylglycine, directly fostered HF-relevant phenotypes, including decreased cardiomyocyte sarcomere contraction, and B-type natriuretic peptide gene expression in both cultured cardiomyoblasts and murine atrial tissue. CONCLUSIONS: The present study reveals the gut microbial metabolite PAGln is clinically and mechanistically linked to HF presence and severity. Modulating the gut microbiome, in general, and PAGln production, in particular, may represent a potential therapeutic target for modulating HF. REGISTRATION: URL: https://clinicaltrials.gov/; Unique identifier: NCT00590200 and URL: https://drks.de/drks_web/; Unique identifier: DRKS00020915.


Assuntos
Microbioma Gastrointestinal , Insuficiência Cardíaca , Disfunção Ventricular Esquerda , Animais , Humanos , Camundongos , Peptídeo Natriurético Encefálico , Volume Sistólico/fisiologia , Função Ventricular Esquerda
16.
J Alzheimers Dis ; 89(4): 1439-1452, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36057823

RESUMO

BACKGROUND: Animal studies suggest that gut microbiome metabolites such as trimethylamine N-oxide (TMAO) may influence cognitive function and dementia risk. However potential health effects of TMAO and related metabolites remain unclear. OBJECTIVE: We examined prospective associations of TMAO, γ-butyrobetaine, crotonobetaine, carnitine, choline, and betaine with risk of cognitive impairment and dementia among older adults aged 65 years and older in the Cardiovascular Health Study (CHS). METHODS: TMAO and metabolites were measured in stored plasma specimens collected at baseline. Incident cognitive impairment was assessed using the 100-point Modified Mini-Mental State Examination administered serially up to 7 times. Clinical dementia was identified using neuropsychological tests adjudicated by CHS Cognition Study investigators, and by ICD-9 codes from linked Medicare data. Associations of each metabolite with cognitive outcomes were assessed using Cox proportional hazards models. RESULTS: Over a median of 13 years of follow-up, 529 cases of cognitive impairment, and 522 of dementia were identified. After multivariable adjustment for relevant risk factors, no associations were seen with TMAO, carnitine, choline, or betaine. In contrast, higher crotonobetaine was associated with 20-32% higher risk of cognitive impairment and dementia per interquintile range (IQR), while γ-butyrobetaine was associated with ∼25% lower risk of the same cognitive outcomes per IQR.∥Conclusion:These findings suggest that γ-butyrobetaine, crotonobetaine, two gut microbe and host metabolites, are associated with risk of cognitive impairment and dementia. Our results indicate a need for mechanistic studies evaluating potential effects of these metabolites, and their interconversion on brain health, especially later in life.


Assuntos
Disfunção Cognitiva , Demência , Animais , Betaína/análogos & derivados , Betaína/metabolismo , Carnitina/metabolismo , Colina , Disfunção Cognitiva/epidemiologia , Demência/epidemiologia , Medicare , Metilaminas/metabolismo , Estados Unidos/epidemiologia
17.
Redox Biol ; 55: 102401, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35870340

RESUMO

BACKGROUND: Hydrogen sulfide (H2S), a gaseous signaling molecule that impacts multiple physiological processes including aging, is produced via select mammalian enzymes and enteric sulfur-reducing bacteria. H2S research is limited by the lack of an accurate internal standard-containing assay for its quantitation in biological matrices. METHODS: After synthesizing [34S]H2S and developing sample preparation protocols that avoid sulfide contamination with the addition of thiol-containing standards or reducing reagents, we developed a stable isotope-dilution high performance liquid chromatography tandem-mass spectrometry (LC-MS/MS) method for the simultaneous quantification of Total H2S and other abundant thiols (cysteine, homocysteine, glutathione, glutamylcysteine, cysteinylglycine) in biological matrices, conducted a 20-day analytical validation/normal range study, and then both analyzed circulating Total H2S and thiols in plasma from 400 subjects, and within 20 volunteers before and after antibiotic-induced suppression of gut microbiota. RESULTS: Using the new assay, all analytes showed minimal interference, no carryover, and excellent intra- and inter-day reproducibility (≤7.6%, and ≤12.7%, respectively), linearity (r2 > 0.997), recovery (90.9%-110%) and stability (90.0%-100.5%). Only circulating Total H2S levels showed significant age-associated reductions in both males and females (p < 0.001), and a marked reduction following gut microbiota suppression (mean 33.8 ±â€¯17.7%, p < 0.001), with large variations in gut microbiota contribution among subjects (range 6.0-66.7% reduction with antibiotics). CONCLUSIONS: A stable-isotope-dilution LC-MS/MS method is presented for the simultaneous quantification of Total H2S and multiple thiols in biological matrices. We then use this assay panel to show a striking age-related decline and gut microbiota contribution to circulating Total H2S levels in humans.

18.
Am J Cardiol ; 178: 26-34, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35787338

RESUMO

Accumulating evidence suggests that statins can influence the microbiota. We investigated the effects of statin therapy on circulating levels of atherogenic gut microbial metabolite, trimethylamine N-oxide (TMAO), and subsequent clinical outcomes. We examined the effects of statin use on plasma TMAO in patients who are statin-naive with dyslipidemia previously enrolled in 2 intervention studies, International Medical Innovations (n = 79) and Advances in Atorvastatin Research Group (n = 27) in a post hoc analysis. A propensity score matching model stratified by statin use was used to validate the associations between statin use, plasma TMAO, and major adverse cardiovascular events across 4,007 patients who underwent elective coronary angiography. In the International Medical Innovations cohort, at 4 weeks, statin use was associated with decreased plasma TMAO (p = 0.03) and a return to baseline after statin discontinuation. In both intervention cohorts, patients with higher baseline TMAO (predefined cutoff 6.18 µM) showed significant reductions in TMAO (all p <0.05). Propensity score matching on statin use (1,196 patient-pairs) revealed lower plasma TMAO (p = 0.002) with statin use. An adjusted cox regression model including statin use, TMAO, and cholesterol showed preserved association of statin use and TMAO but not cholesterol with major adverse cardiovascular events (p = 0.005, p <0.001, p = 0.24, respectively). A likelihood ratio test showed improved model fit (p <0.001) with the addition of TMAO. In conclusion, our findings demonstrate that statin therapy significantly decreases plasma TMAO levels, suggesting the potential contribution of a statin-mediated reduction of TMAO production in cardiovascular benefits in addition to improved lipid profile and attenuated inflammation.


Assuntos
Doenças Cardiovasculares , Microbioma Gastrointestinal , Inibidores de Hidroximetilglutaril-CoA Redutases , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/prevenção & controle , Fatores de Risco de Doenças Cardíacas , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Metilaminas , Fatores de Risco
19.
Eur J Nutr ; 61(5): 2357-2364, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35113194

RESUMO

PURPOSE: Some species of fish and seafood are high in trimethylamine N-oxide (TMAO), which accumulates in muscle where it protects against pressure and cold. Trimethylamine (TMA), the metabolic precursor to TMAO, is formed in fish during bacterial spoilage. Fish intake is promoted for its potential cardioprotective effects. However, numerous studies show TMAO has pro-atherothrombotic properties. Here, we determined the effects of fish or seafood consumption on circulating TMAO levels in participants with normal renal function. METHODS: TMAO and omega-3 fatty acid content were quantified across multiple different fish or seafood species by mass spectrometry. Healthy volunteers (n = 50) were recruited for three studies. Participants in the first study consented to 5 consecutive weekly blood draws and provided dietary recall for the 24 h preceding each draw. In the second study, TMAO levels were determined following defined low and high TMAO diets. Finally, participants consumed test meals containing shrimp, tuna, fish sticks, salmon or cod. TMAO levels were quantified by mass spectrometry in blood collected before and after dietary challenge. RESULTS: TMAO + TMA content varied widely across fish and seafood species. Consumption of fish sticks, cod, and to a lesser extent salmon led to significant increases in circulating TMAO levels. Within 1 day, circulating TMAO concentrations in all participants returned to baseline levels. CONCLUSIONS: We conclude that some fish and seafood contain high levels of TMAO, and may induce a transient elevation in TMAO levels in some individuals. Selection of low TMAO content fish is prudent for subjects with elevated TMAO, cardiovascular disease or impaired renal function.


Assuntos
Peixes , Alimentos Marinhos , Animais , Bactérias , Dieta , Ácidos Graxos Ômega-3 , Peixes/microbiologia , Humanos , Espectrometria de Massas , Metilaminas/sangue , Alimentos Marinhos/microbiologia
20.
Clin Res Cardiol ; 111(6): 692-704, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35220448

RESUMO

BACKGROUND: Trimethylamine N-oxide (TMAO) has been associated with cardiovascular outcomes. However, the diagnostic value of TMAO and its precursors have not been assessed for functionally relevant coronary artery disease (fCAD) and its prognostic potential in this setting needs to be evaluated. METHODS: Among 1726 patients with suspected fCAD serum TMAO, and its precursors betaine, choline and carnitine, were quantified using liquid chromatography tandem mass spectrometry. Diagnosis of fCAD was performed by myocardial perfusion single photon emission tomography (MPI-SPECT) and coronary angiography blinded to marker concentrations. Incident all-cause death, cardiovascular death (CVD) and myocardial infarction (MI) were assessed during 5-years follow-up. RESULTS: Concentrations of TMAO, betaine, choline and carnitine were significantly higher in patients with fCAD versus those without (TMAO 5.33 µM vs 4.66 µM, p < 0.001); however, diagnostic accuracy was low (TMAO area under the receiver operating curve [AUC]: 0.56, 95% CI [0.53-0.59], p < 0.001). In prognostic analyses, TMAO, choline and carnitine above the median were associated with significantly (p < 0.001 for all) higher cumulative events for death and CVD during 5-years follow-up. TMAO remained a significant predictor for death and CVD even in full models adjusted for renal function (HR = 1.58 (1.16, 2.14), p = 0.003; HR = 1.66 [1.07, 2.59], p = 0.025). Prognostic discriminative accuracy for TMAO was good and robust for death and CVD (2-years AUC for CVD 0.73, 95% CI [0.65-0.80]). CONCLUSION: TMAO and its precursors, betaine, choline and carnitine were significantly associated with fCAD, but with limited diagnostic value. TMAO was a strong predictor for incident death and CVD in patients with suspected fCAD. CLINICAL TRIAL REGISTRATION: NCT01838148.


Assuntos
Doenças Cardiovasculares , Doença da Artéria Coronariana , Microbioma Gastrointestinal , Betaína/metabolismo , Doenças Cardiovasculares/diagnóstico , Carnitina , Colina/metabolismo , Doença da Artéria Coronariana/diagnóstico , Fatores de Risco de Doenças Cardíacas , Humanos , Metilaminas/metabolismo , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...